Given that, equation of pair of straight lines is (ax+by)2−3(bx−ay)2=0 ⇒a2x2+b2y2+2abxy −3(b2x2+a2y2−2abxy)=0 ⇒(a2−3b2)x2−(b2−3a2)y2+8abxy=0
Let the equation of line be y=m1x,y=m2x. ∴m1+m2=b2−3a2−4ab ⎣⎡m1+m2=−b2h∵m1m2=ba⎦⎤
and m1m2=b2−3a2a2−3b2
Now, (m1−m2)2=(m1+m2)2−4m1m2 =(b2−3a2)216a2b2−(b2−3a2)4(a2−3b2) =(b2−3a2)24[4a2b2−(a2−3b2)(b2−3a2)] =(b2−3a2)24[4a2b2−(a2b2−3a4−3b4+9a2b2)] =(b2−3a2)24[−6a2b2+3a4+3b4] =(b2−3a2)224(a2−b2)2 ∴(m1−m2)=(b2−3a2)23⋅(a2−b2)...(i)
The intersecting point on the lines y=m1x, y=m2x and ax+by+c=0
are A(0,0),B(a+bm1−c,a+bm1−cm2)
and C(a+bm2−c,a+bm2−cm1)
Area of Δ=21∣∣0a+bm1−ca+bm2−c0a+bm1−cm1a+bm2−cm2111∣∣ =21[(a+bm1)(a+bm2)+c2m2−(a+bm1)(a+bm2)c2m1] =−21[a2+ab(m1+m2)+b2m1m2c2(m1−m2)] =a2+ab(b2−3a2−4ab)+b2(b2−3a2a2−3b2)−21[(b2−3a2)c223⋅(a2−b2)][ from Eq.(i)] =a2(b2−3a2)−4a2b2+a2b2−3b4−3[(a2−b2)c2] =a2b2−3a4−3a2b2−3b4−3[c2(a2−b2)] =−3(a4+b4+2a2b2)−3c2 =3(a2+b2)2c2