Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The area of the triangle formed by the pair of straight lines (a x+b y)2-3(b x-a y)2=0 and a x+b y+c=0 is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The area of the triangle formed by the pair of straight lines $(a x+b y)^{2}-3(b x-a y)^{2}=0$ and $a x+b y+c=0$ is
EAMCET
EAMCET 2005
A
$\frac{c^{2}}{a^{2}+b^{2}}$
B
$\frac{c^{2}}{2\left(a^{2}+b^{2}\right)}$
C
$\frac{c^{2}}{\sqrt{2}\left(a^{2}+b^{2}\right)}$
D
$\frac{c^{2}}{\sqrt{3}\left(a^{2}+b^{2}\right)}$
Solution:
Given that, equation of pair of straight lines is
$(a x+b y)^{2}-3(b x-a y)^{2}=0$
$\Rightarrow a^{2} x^{2}+b^{2} y^{2}+2 a b x y$
$-3\left(b^{2} x^{2}+a^{2} y^{2}-2 a b x y\right)=0$
$\Rightarrow \left(a^{2}-3 b^{2}\right) x^{2}-\left(b^{2}-3 a^{2}\right) y^{2}+8 a b x y=0$
Let the equation of line be $y=m_{1} \,x,\, y=m_{2} \,x$.
$\therefore m_{1}+m_{2}=\frac{-4 a b}{b^{2}-3 a^{2}}$
$\begin{bmatrix}m_{1}+m_{2}=-\frac{2h}{b}\\ \because\\ m_{1} m_{2}=\frac{a}{b}\end{bmatrix}$
and $m_{1} m_{2}=\frac{a^{2}-3 b^{2}}{b^{2}-3 a^{2}}$
Now, $\left(m_{1}-m_{2}\right)^{2}=\left(m_{1}+m_{2}\right)^{2}-4 m_{1}\, m_{2}$
$=\frac{16 a^{2} b^{2}}{\left(b^{2}-3 a^{2}\right)^{2}}-\frac{4\left(a^{2}-3 b^{2}\right)}{\left(b^{2}-3 a^{2}\right)}$
$=\frac{4}{\left(b^{2}-3 a^{2}\right)^{2}} \left[4 a^{2} b^{2}-\left(a^{2}-3 b^{2}\right)\left(b^{2}-3 a^{2}\right)\right]$
$=\frac{4}{\left(b^{2}-3 a^{2}\right)^{2}}\left[4 a^{2} b^{2}-\left(a^{2} b^{2}-3 a^{4}\right.\right.\left.\left.-3 b^{4}+9 a^{2} b^{2}\right)\right]$
$=\frac{4}{\left(b^{2}-3 a^{2}\right)^{2}}\left[-6 a^{2} b^{2}+3 a^{4}+3 b^{4}\right]$
$=\frac{24}{\left(b^{2}-3 a^{2}\right)^{2}}\left(a^{2}-b^{2}\right)^{2}$
$\therefore \left(m_{1}-m_{2}\right)=\frac{2 \sqrt{3}}{\left(b^{2}-3 a^{2}\right)} \cdot\left(a^{2}-b^{2}\right)\,\,\,...(i)$
The intersecting point on the lines $y=m_{1}\, x$,
$y=m_{2} x$ and $a x+b y+c=0$
are $A(0,0), B\left(\frac{-c}{a+b m_{1}}, \frac{-c m_{2}}{a+b m_{1}}\right)$
and $C\left(\frac{-c}{a+b m_{2}}, \frac{-c m_{1}}{a+b m_{2}}\right)$
Area of $\Delta=\frac{1}{2}\begin{vmatrix}0 & 0 & 1 \\ \frac{-c}{a+b m_{1}} & \frac{-c m_{1}}{a+b m_{1}} & 1 \\ \frac{-c}{a+b m_{2}} & \frac{-c m_{2}}{a+b m_{2}} & 1\end{vmatrix}$
$=\frac{1}{2}\left[\frac{+c^{2} m_{2}}{\left(a+b m_{1}\right)\left(a+b m_{2}\right)}-\frac{c^{2} m_{1}}{\left(a+b m_{1}\right)\left(a+b m_{2}\right)}\right]$
$=-\frac{1}{2}\left[\frac{c^{2}\left(m_{1}-m_{2}\right)}{a^{2}+a b\left(m_{1}+m_{2}\right)+b^{2} m_{1} m_{2}}\right]$
$=\frac{-\frac{1}{2}\left[\frac{c^{2} 2 \sqrt{3}}{\left(b^{2}-3 a^{2}\right)} \cdot\left(a^{2}-b^{2}\right)\right]}{a^{2}+a b\left(\frac{-4 a b}{b^{2}-3 a^{2}}\right)+b^{2}\left(\frac{a^{2}-3 b^{2}}{b^{2}-3 a^{2}}\right)}[$ from Eq.(i)]
$=\frac{-\sqrt{3}\left[\left(a^{2}-b^{2}\right) c^{2}\right]}{a^{2}\left(b^{2}-3 a^{2}\right)-4 a^{2} b^{2}+a^{2} b^{2}-3 b^{4}}$
$=\frac{-\sqrt{3}\left[c^{2}\left(a^{2}-b^{2}\right)\right]}{a^{2} b^{2}-3 a^{4}-3 a^{2} b^{2}-3 b^{4}}$
$=\frac{-\sqrt{3} c^{2}}{-3\left(a^{4}+b^{4}+2 a^{2} b^{2}\right)}$
$=\frac{c^{2}}{\sqrt{3}\left(a^{2}+b^{2}\right)^{2}}$