Q.
The area of the region bounded by the parabola (y−2)2=x−1 , the tangent to the parabola at the point (2,3) and the x-axis is
3872
215
AIEEEAIEEE 2009Application of Integrals
Report Error
Solution:
Equation of tangent at (2, 3) to (y−2)2=x−1 is S1=0 ⇒x−2y+4=0
Required Area = Area of ΔOCB+ Area of OAPD− Area of ΔPCD =21(4×2)+0∫3(y2−4y+5)dy−21(1×2) =4+[3y3−2y2+5y]03−1=4−9−18+15+−1 =28−19=9 sq. units
(or)
Area =0∫3(2y−4−y2+4y−5)dy−0∫3(y2+6y−5)dy=−0∫3(3−y)2dy=[3(y−3)3]03=327=9 sq.units