Q.
The area bounded by y=f(x) and the curve y=1+x22 where f is a continuous function satisfying the conditions f(x)⋅f(y)=f(xy).∀x,y,∈R and f′(1)=2,f(1)=1 is
then
f′(x)=h→0limhf(x+h)−f(x) h→0limhf(x(1+h/x))−f(x)=xf(x)h→0limh/xf(1+h/x)−f(1) =xf(x)⋅f′(1) ∴f′(x)=x2f(x) or f(x)f′(x)=x2
Integrating both sides, we get, f(x)=cx2 Since f(1)=1, ∴c=1
So, f(x)=x2. Now, 1+x22=x2 ⇒x4+x2−2=0 ⇒x2=1 ⇒x=±1
Required area =2[∫01(1+x22−x2)dx] =2[2tan−1x−3x3]01=2[2π−31]=(π−32) sq. units.