The equation of pair of tangent from the point (1,21) to the circle S≡x2+y2+4x+2y−4=0 is SS1=T2 (x2+y2+4x+2y−4)(1+41+4+1−4) =[x+21y+2(x+1)+y+21−4]2 49(x2+y2+4x+2y−4)=(3x+23y−23)2 ⇒49(x2+y2+4x+2y−4)=49(2x+y−1)2 ⇒x2+y2+4x+2y−4 =4x2+y2+1+4xy−2y−4x ⇒3x2+4xy−8x−4y+5=0
On comparing this equation with ax2+2hxy+by2+2gx+2fy+c=0 , we get a=3,h=2,b=0,g=−4,f=−2,c=5
Required angle =tan−1∣∣a+b2h2−ab∣∣ =tan−1∣∣324−0∣∣ =tan−134 =sin−1(54)