Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The angle between the pair of tangents from the point ( 1, (1/2) ) to the circle x2+y2+4x+2y-4=0 , is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The angle between the pair of tangents from the point $ \left( 1,\,\,\frac{1}{2} \right) $ to the circle $ {{x}^{2}}+{{y}^{2}}+4x+2y-4=0 $ , is
Jharkhand CECE
Jharkhand CECE 2010
A
$ {{\cos }^{-1}}\left( \frac{4}{5} \right) $
B
$ {{\sin }^{-1}}\left( \frac{4}{5} \right) $
C
$ {{\tan }^{-1}}\left( \frac{4}{5} \right) $
D
None of these
Solution:
The equation of pair of tangent from the point
$ \left( 1,\,\,\frac{1}{2} \right) $ to the circle
$ S\equiv {{x}^{2}}+{{y}^{2}}+4x+2y-4=0 $ is $ S{{S}_{1}}={{T}^{2}} $
$ ({{x}^{2}}+{{y}^{2}}+4x+2y-4)\left( 1+\frac{1}{4}+4+1-4 \right) $
$ ={{\left[ x+\frac{1}{2}y+2(x+1)+y+\frac{1}{2}-4 \right]}^{2}} $
$ \frac{9}{4}({{x}^{2}}+{{y}^{2}}+4x+2y-4)={{\left( 3x+\frac{3}{2}y-\frac{3}{2} \right)}^{2}} $
$ \Rightarrow $ $ \frac{9}{4}({{x}^{2}}+{{y}^{2}}+4x+2y-4)=\frac{9}{4}{{(2x+y-1)}^{2}} $
$ \Rightarrow $ $ {{x}^{2}}+{{y}^{2}}+4x+2y-4 $
$ =4{{x}^{2}}+{{y}^{2}}+1+4xy-2y-4x $
$ \Rightarrow $ $ 3{{x}^{2}}+4xy-8x-4y+5=0 $
On comparing this equation with
$ a{{x}^{2}}+2hxy+b{{y}^{2}}+2gx+2fy+c=0 $ , we get
$ a=3,\,\,h=2,\,\,b=0,\,\,g=-4,\,\,f=-2,\,\,c=5 $
Required angle $ ={{\tan }^{-1}}\left| \frac{2\sqrt{{{h}^{2}}-ab}}{a+b} \right| $
$ ={{\tan }^{-1}}\left| \frac{2\sqrt{4-0}}{3} \right| $
$ ={{\tan }^{-1}}\frac{4}{3} $
$ ={{\sin }^{-1}}\left( \frac{4}{5} \right) $