Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The angle between the curves y=ax of and y=bx is equal to
Q. The angle between the curves
y
=
a
x
of and
y
=
b
x
is equal to
2100
199
KEAM
KEAM 2009
Application of Derivatives
Report Error
A
tan
−
1
(
∣
∣
1
+
ab
a
−
b
∣
∣
)
10%
B
tan
−
1
(
∣
∣
1
−
ab
a
+
b
∣
∣
)
17%
C
tan
−
1
(
∣
∣
1
+
l
o
g
a
l
o
g
b
l
o
g
b
+
l
o
g
a
∣
∣
)
12%
D
tan
−
1
(
∣
∣
1
−
l
o
g
a
l
o
g
b
l
o
g
a
+
l
o
g
b
∣
∣
)
15%
E
tan
−
1
(
∣
∣
1
+
l
o
g
a
l
o
g
b
l
o
g
a
−
l
o
g
b
∣
∣
)
15%
Solution:
The point of intersection of given curves is (0, 1).
On differentiating given curves, we get
d
x
d
y
=
a
x
lo
g
a
,
d
x
d
y
=
b
x
lo
g
b
⇒
m
1
=
a
x
lo
g
a
,
m
2
=
b
x
lo
g
b
At (0, 1),
m
1
=
l
o
g
a
,
m
2
=
l
o
g
b
∴
tan
θ
=
1
+
m
1
m
2
m
1
−
m
2
⇒
θ
=
tan
−
1
(
1
+
l
o
g
a
l
o
g
b
l
o
g
a
−
l
o
g
b
)