The point of intersection of given curves is (0, 1).
On differentiating given curves, we get
$ \frac{dy}{dx}={{a}^{x}}\log a,\frac{dy}{dx}={{b}^{x}}\log b $
$ \Rightarrow $ $ {{m}_{1}}={{a}^{x}}\log a,{{m}_{2}}={{b}^{x}}\log b $
At (0, 1), $ {{m}_{1}}=log\text{ }a,\text{ }{{m}_{2}}=log\text{ }b $
$ \therefore $ $ \tan \theta =\frac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} $
$ \Rightarrow $ $ \theta ={{\tan }^{-1}}\left( \frac{\log a-\log b}{1+\log a\log b} \right) $