Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The angle between the circles x2 + y2 + 4x + 2y + 1 = 0 and x2 + y2 - 2x + 6y - 6 = 0 is
Q. The angle between the circles
x
2
+
y
2
+
4
x
+
2
y
+
1
=
0
and
x
2
+
y
2
−
2
x
+
6
y
−
6
=
0
is
1677
174
COMEDK
COMEDK 2012
Conic Sections
Report Error
A
6
π
15%
B
3
π
20%
C
2
π
29%
D
cos
−
1
16
7
35%
Solution:
Let
θ
be the angle of intersection of two given circles having centres
(
−
g
,
−
f
)
=
(
−
2
,
−
1
)
and
(
−
g
1
,
−
f
1
)
=
(
1
,
−
3
)
respectively, Then
cos
θ
=
∣
∣
2
g
2
+
f
2
−
c
g
1
2
+
f
1
2
−
c
1
−
2
g
g
1
−
2
f
f
1
+
c
+
c
1
∣
∣
=
∣
∣
2
×
4
×
16
−
2
(
−
2
)
−
2
(
3
)
+
1
−
6
∣
∣
=
∣
∣
16
4
−
6
−
5
∣
∣
=
16
7
⇒
θ
=
cos
−
1
(
16
7
)