Let $\theta$ be the angle of intersection of two given circles having centres $(-g, -f ) = (-2, -1)$ and $(-g_1, -f_1) = (1, -3)$ respectively, Then
$\cos\theta =\left|\frac{-2\,g\,g_{1} - 2 f f_{1} +c +c_{1}}{2\sqrt{g^{2} +f^{2} -c} \sqrt{g_{1}^{2} + f_{1}^{2} -c_{1}}} \right| $
$= \left|\frac{-2\left(-2\right) -2\left(3\right)+1-6}{2\times\sqrt{4} \times \sqrt{16}}\right| =\left|\frac{4-6-5}{16}\right| = \frac{7}{16}$
$\Rightarrow \theta =\cos^{-1} \left(\frac{7}{16}\right)$