Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The angle at which the curve y = ke kx intersects the y-axis is:
Q. The angle at which the curve
y
=
k
e
k
x
intersects the
y
-axis is:
2261
168
Application of Derivatives
Report Error
A
tan
−
1
(
k
2
)
B
cot
−
1
(
k
2
)
C
sin
−
1
(
1
+
k
4
1
)
D
sec
−
1
1
+
k
4
Solution:
Given
y
=
k
e
k
x
. The curve
intersects the
y
-axis at
(
0
,
k
)
So,
(
d
x
d
y
)
(
0
,
k
)
=
k
2
If
θ
is the angle at which 1 the given curve intersects the
y
-axis, then
tan
(
2
π
−
θ
)
=
1
+
0.
k
2
k
2
−
0
=
k
2
⇒
θ
=
co
t
−
1
(
k
2
)