Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The absolute maximum of x40-x20 on the interval [0,1] is
Q. The absolute maximum of
x
40
−
x
20
on the interval
[
0
,
1
]
is
2116
247
J & K CET
J & K CET 2006
Report Error
A
−
1/4
B
0
C
1/4
D
1/2
Solution:
Given,
y
=
x
40
−
x
20
∴
d
x
d
y
=
40
x
39
−
20
x
19
d
x
d
y
=
20
x
19
(
2
x
20
−
1
)
Now, put
d
x
d
y
=
0
ie,
20
x
19
(
2
x
20
−
1
)
=
0
⇒
x
=
0
or
x
20
=
1/2
y
x
=
0
=
0
and
y
x
=
1
=
0
Now,
y
=
x
40
−
x
20
=
(
x
20
)
2
−
x
20
y
x
20
=
2
1
=
(
2
1
)
2
−
2
1
=
4
1
−
2
1
=
−
4
1
∴
Absolute maximum value of y is 0.