Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The absolute maximum of $ {{x}^{40}}-{{x}^{20}} $ on the interval $ [0,1] $ is

J & K CETJ & K CET 2006

Solution:

Given, $ y={{x}^{40}}-{{x}^{20}} $
$ \therefore $ $ \frac{dy}{dx}=40{{x}^{39}}-20{{x}^{19}} $
$ \frac{dy}{dx}=20{{x}^{19}}(2{{x}^{20}}-1) $
Now, put $ \frac{dy}{dx}=0 $ ie,
$ 20{{x}^{19}}(2{{x}^{20}}-1)=0 $
$ \Rightarrow $ $ x=0 $ or $ {{x}^{20}}=1/2 $
$ {{y}_{x=0}}=0 $ and $ {{y}_{x=1}}=0 $
Now, $ y={{x}^{40}}-{{x}^{20}}={{({{x}^{20}})}^{2}}-{{x}^{20}} $
$ {{y}_{{{x}^{20}}=\frac{1}{2}}}={{\left( \frac{1}{2} \right)}^{2}}-\frac{1}{2}=\frac{1}{4}-\frac{1}{2}=-\frac{1}{4} $
$ \therefore $ Absolute maximum value of y is 0.