Q.
Suppose, z1​,z2​,z3​ are the vertices of an equilateral triangle inscribed in the circle ∣z∣=2. If z1​=1+i3​ then z2​ and z3​ are equal to
3400
195
Complex Numbers and Quadratic Equations
Report Error
Solution:
A(z1​),B(z2​),C(z3​) lie on ∣z∣=2 whose centre is at O(0,0) and radius 2. z1​=1+3​i hence ∣z∣=2 and Arg(z1​)=3π​
In turn ∣z2​∣=∣z3​∣=2 and Arg(z2​)=Arg(z1​)+120∘=180∘ ∴z2​=−2
Further, Arg(z3​)=Arg(z2​)+120∘=300∘
Hence, z3​=2[cos(2π−3π​)+isin(2π−3π​)] =2[cos3π​−isin3π​]=2(21​−2i3​​) =1−3​i
Thus, z2​=−2
and z3​=1−i3​