- Tardigrade
- Question
- Mathematics
- Suppose we define the definite integral using the following formula ∫ limitsab f(x) d x=(b-a/2) (f(a)+f(b)), for more accurate result for c ∈(a, b), F(c)=(c-a/2)(f(a)+f(c))+(b-c/2)(f(b)+f(c)). When c=(a+b/2), ∫ limitsab f(x) d x=(b-a/4)(f(a)+f(b)+2 f(c)). If f(x) is a polynomial and if displaystyle lim t arrow a (∫ limitsat f(x) d x-((t-a)/2)(f(t)+f(a))/(t-a)3)=0 for all a. then the degree of f(x) can atmost be
Q.
Suppose we define the definite integral using the following formula , for more accurate result for .
When .
If is a polynomial and if for all a. then the degree of can atmost be
Solution: