Q.
Suppose we define the definite integral using the following formula $\int\limits_a^b f(x) d x=\frac{b-a}{2} (f(a)+f(b))$, for more accurate result for $c \in(a, b), F(c)=\frac{c-a}{2}(f(a)+f(c))+\frac{b-c}{2}(f(b)+f(c))$.
When $c=\frac{a+b}{2}, \int\limits_a^b f(x) d x=\frac{b-a}{4}(f(a)+f(b)+2 f(c))$.
If $f(x)$ is a polynomial and if $\displaystyle\lim _{t \rightarrow a} \frac{\int\limits_a^t f(x) d x-\frac{(t-a)}{2}(f(t)+f(a))}{(t-a)^3}=0$ for all a. then the degree of $f(x)$ can atmost be
Integrals
Solution: