We have ∫sin7xcos2x1−7cos2xdx=∫sin7xsec2xdx−7∫sin7x1dx=I1−I2
Now, I1=∫(sin7x1)sec2xdx=sin7xtanx+7∫sin8xtanxcosxdx=sin7xtanx+I2
(I) (II)
(By parts) ∴I1−I2=sin7xtanx+C, where C is constant of integration.
Hence g(x)=tanx
So, g′(x)=sec2x and g′′(x)=2sec2xtanx ∴g′(0)=1 and g′′(4π)=4.
Hence g′(0)+g′′(4π)=1+4=5
Alternatively: We have ∫sin7xcos2x1−7cos2xdx=sin7xg(x)+C.....(1)
Differentiating both sides with respect to x, we get, sin7xcos2x1−7cos2x=sin14x(sin7x)g′(x)−g(x)(7sin6xcosx)⇒sec2x−7=g′(x)−7g(x)cotx, which is possible when g(x)=tanx.
So, g′(x)=sec2x and g′′(x)=2sec2xtanx ∴g′(0)=1 and g′′(4π)=4. Hence g′(0)+g′′(4π)=1+4=5