Q.
Suppose $\int \frac{1-7 \cos ^2 x}{\sin ^7 x \cos ^2 x} d x=\frac{g(x)}{\sin ^7 x}+C$,
where $C$ is arbitrary constant of integration. Then find the value of $g^{\prime}(0)+g^{\prime \prime}\left(\frac{\pi}{4}\right)$
Integrals
Solution: