Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Suppose α, β, γ ∈ R are such that sin α, sin β, sin γ ≠ 0 and Δ=| sin 2 α sin α cos α cos 2 α sin 2 β sin β cos β cos 2 β sin 2 γ sin γ cos γ cos 2 γ| then Δ cannot exceed
Q. Suppose
α
,
β
,
γ
∈
R
are such that
sin
α
,
sin
β
,
sin
γ
=
0
and
Δ
=
∣
∣
sin
2
α
sin
2
β
sin
2
γ
sin
α
cos
α
sin
β
cos
β
sin
γ
cos
γ
cos
2
α
cos
2
β
cos
2
γ
∣
∣
then
Δ
cannot exceed
1601
204
Determinants
Report Error
A
1
B
0
C
−
2
1
D
None of these
Solution:
We can write
Δ
as,
Δ
=
sin
2
α
sin
2
β
sin
2
γ
∣
∣
1
1
1
cot
α
cot
β
cot
γ
cot
2
α
cot
2
β
cot
2
γ
∣
∣
=
s
i
n
2
α
s
i
n
2
β
s
i
n
2
γ
(
cot
β
−
cot
α
)
(
co
t
γ
−
co
t
α
)
(
co
t
γ
−
co
t
β
)
=
s
in
(
α
−
β
)
sin
(
α
−
γ
)
sin
(
β
−
γ
)
It is clear from here that
Δ
cannot exceed 1 .
[
∵
sin
θ
⊁
1
, for any
θ
∈
R
]