Q.
Suppose $\alpha, \beta, \gamma \in R$ are such that $\sin \alpha, \sin \beta, \sin \gamma \neq 0$ and
$\Delta=\begin{vmatrix}\sin ^{2} \alpha & \sin \alpha \cos \alpha & \cos ^{2} \alpha \\ \sin ^{2} \beta & \sin \beta \cos \beta & \cos ^{2} \beta \\ \sin ^{2} \gamma & \sin \gamma \cos \gamma & \cos ^{2} \gamma\end{vmatrix}$ then $\Delta$ cannot exceed
Determinants
Solution: