Q.
Suppose α,β are two real numbers and f(n)=αn+βn.
Let
Δ=∣∣31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)∣∣
If Δ=k(α−1)2(β−1)2(α−β)2, then k is equal to
Δ=∣∣1+1+11+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4∣∣ =∣∣1111αα21ββ2∣∣∣∣1111αα21ββ2∣∣=Δ12
whereΔ1=∣∣1111αα21ββ2∣∣
Applying C3→C3−C2 and C2→C2−C1, we get Δ1=∣∣1110α−1α2−10β−αβ2−α2∣∣ =(α−1)(β−α)∣∣1α+11β+α∣∣ =(α−1)(β−1)(β−α) Thus, Δ=(α−1)2(β−1)2(α−β)2 ∴k=1