Q.
Suppose $\alpha, \beta$ are two real numbers and $f(n)=\alpha^n+\beta^n$.
Let
$\Delta=\begin{vmatrix}
3 & 1+f(1) & 1+f(2) \\
1+f(1) & 1+f(2) & 1+f(3) \\
1+f(2) & 1+f(3) & 1+f(4)
\end{vmatrix}$
If $\Delta=k(\alpha-1)^2(\beta-1)^2(\alpha-\beta)^2$, then $k$ is equal to
Determinants
Solution: