Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Sum of all values of x lying between 0 2 π and satisfying the equation 2 log 25(52 cos x-4)=2 cos x+ cos π is
Q. Sum of all values of
x
lying between
0&2
π
and satisfying the equation
2
lo
g
25
(
5
2
c
o
s
x
−
4
)
=
2
cos
x
+
cos
π
is
160
128
Continuity and Differentiability
Report Error
A
2
π
B
2
π
C
3
π
D
3
5
π
Solution:
lo
g
5
(
5
2
c
o
s
x
−
4
)
=
2
cos
x
−
1
5
2
c
o
s
x
−
4
=
5
5
2
c
o
s
x
let
5
2
c
o
s
x
=
y
we get
5
(
y
−
4
)
=
y
⇒
y
=
5
=
5
2
c
o
s
x
⇒
cos
x
=
2
1
⇒
x
⇒
{
3
π
,
3
5
π
}