Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Sum of all values of $x$ lying between $0 \& 2 \pi$ and satisfying the equation $2 \log _{25}\left(5^{2 \cos x}-4\right)=2 \cos x+\cos \pi$ is

Continuity and Differentiability

Solution:

$ \log _5\left(5^{2 \cos x}-4\right)=2 \cos x-1 $
$ 5^{2 \cos x}-4=\frac{5^{2 \cos x}}{5}$
let $5^{2 \cos x}=y$ we get
$5(y-4)=y \Rightarrow y=5=5^{2 \cos x} $
$\Rightarrow \cos x=\frac{1}{2} \Rightarrow x \Rightarrow\left\{\frac{\pi}{3}, \frac{5 \pi}{3}\right\} $