Q.
Statement I The semi-vertical angle of the cone of the maximum volume and of given slant height is tan−1(31). Statement II The semi-vertical angle of right circular cone of given surface area and maximum volume is sin−12.
I. Let θ be the semi-vertical angle of the cone.
It is clear that θ∈(0,2π).
Let r,h and I be the radius, height and the slant height of the cone respectively.
The slant height of the cone is given i.e., consider as constant.
Now, r=Isinθ and h=Icosθ
Let V be the volume of the cone; V=3πr2h ⇒V=31π(I2sin2θ)(lcosθ)=31πl3sin2θcosθ
On differentiating w.r.t. θ, we get dθdV=3I3π[sin2θ(−sinθ)+cosθ(2sinθcosθ)] =3I3π(−sin3θ+2sinθcos2θ)
and dθ2d2V=3l3π(−3sin2θcosθ+2cos3θ−4sin2θcosθ) =3l3π(2cos3θ−7sin2θcosθ)
For maxima put dθdV=0 ⇒sin3θ=2sinθcos2θ ⇒tan2θ=2 ⇒tanθ=2 ⇒θ=tan−12
Now, when θ=tan−12, then tan2θ=2 or sin2θ=2cos2θ
Then, we have dθ2d2V=3l3π(2cos3θ−14cos3θ)=−4πl3cos3θ<0 for θ∈(0,2π) ∴ By second derivative test, the volume V is maximum when θ=tan−12
Hence, for a given slant height, the semi-vertical angle of the cone of the maximum volume is tan−12.
II. With usual notation, given that total surface area S=πrl+πr2 ⇒S=πrr2+h2+πr2[∵I=r2+h2] ⇒πrS−r=r2+h2⇒π2r2S2−π2S=h2 ⇒h=π2r2S2−π2S,(∵π2r2S2>π2S).....(i)
and volume V=31πr2h =31πr2π2r2S2−π2S ⇒V=3rS2−2Sπr2,r2<2πSi⋅e.,0<r<2πS
Since, V is maximum, then V2 is maximum.
Now, V2=9S2r2−92Sπr4,0<r<2πS ∴drd(V2)=92rS2−98Sπr3
and dr2d2(V2)=92S2−924Sπr2
For maxima, put drd(V2)=0 ⇒92rS2−98Sπr3=0 ⇒r2=4πS ⇒r=4πS
Here, dr2d2(V2)<0 for r=4πS
So, V2 and hence, V is maximum, when r=4πS
From Eq. (i), h=π2r2S2−π2S=π2SS2(4π)−π2S=π2S
If θ is the semi-vertical angle of the cone when the volume is maximum, then in right triangle AOC, sinθ=r2+h2r=4πS+π2S4πS=1+81
i.e.,θ=sin−1(31)
So, the both the given statements are false.