Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Statement-I: If displaystyle∑ i =12 n displaystyle sin -1 x 1= n π, n ∈ N. Then displaystyle∑ i =1 n x i = displaystyle∑ i =1 n x 12= displaystyle∑ i =1 n x 13 Because Statement-II: -(π/2) ≤ sin -1 x ≤ (π/2), ∀ x ∈[-1,1]
Q.
Statement-I :
If
i
=
1
∑
2
n
sin
−
1
x
1
=
nπ
,
n
∈
N
. Then
i
=
1
∑
n
x
i
=
i
=
1
∑
n
x
1
2
=
i
=
1
∑
n
x
1
3
Because
Statement-II :
−
2
π
≤
sin
−
1
x
≤
2
π
,
∀
x
∈
[
−
1
,
1
]
10
147
Inverse Trigonometric Functions
Report Error
A
Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
B
Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
C
Statement-I is true, Statement-II is false.
D
Statement-I is false, Statement-II is true.
Solution:
Correct answer is (a) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.