Q.
Statement-I : If $\displaystyle\sum_{ i =1}^{2 n } \displaystyle\sin ^{-1} x _1= n \pi, n \in N$. Then $\displaystyle\sum_{ i =1}^{ n } x _{ i }=\displaystyle\sum_{ i =1}^{ n } x _1^2=\displaystyle\sum_{ i =1}^{ n } x _1^3$
Because
Statement-II : $-\frac{\pi}{2} \leq \sin ^{-1} x \leq \frac{\pi}{2}, \forall x \in[-1,1]$
Inverse Trigonometric Functions
Solution: