Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solve the equation 2(cos x + cos2x) + sin2x( 1 + 2cosx) = 2sinx.
Q. Solve the equation
2
(
cos
x
+
cos
2
x
)
+
s
in
2
x
(
1
+
2
cos
x
)
=
2
s
in
x
.
1876
224
Trigonometric Functions
Report Error
A
nπ
+
(
−
1
)
n
(
−
2
π
)
,
n
∈
I
0%
B
2
nπ
±
π
or
2
nπ
±
3
π
,
n
∈
I
33%
C
nπ
,
n
∈
I
17%
D
Both
(
a
)
and
(
b
)
50%
Solution:
The given equation is
2
(
cos
x
+
cos
2
x
)
+
s
in
2
x
(
1
+
2
cos
x
)
=
2
s
in
x
⇒
2
(
cos
x
+
2
co
s
2
x
−
1
)
+
2
s
in
x
cos
x
(
1
+
2
cos
x
)
=
2
s
in
x
⇒
2
cos
x
+
2
s
in
x
cos
x
+
4
co
s
2
x
+
4
s
in
x
co
s
2
x
−
2
−
2
s
in
x
=
0
⇒
2
cos
x
(
1
+
s
in
x
)
+
4
co
s
2
x
(
1
+
s
in
x
)
−
2
(
1
+
s
in
x
)
=
0
⇒
2
(
1
+
s
in
x
)
{
cos
x
+
2
co
s
2
x
−
1
}
=
0
⇒
either
1
+
s
in
x
=
0
or
2
co
s
2
x
+
cos
x
−
1
=
0
First, consider
1
+
s
in
x
=
0
⇒
s
in
x
=
−
1
=
s
in
(
−
2
π
)
⇒
x
=
nπ
+
(
−
1
)
n
(
−
2
π
)
,
n
∈
I
.
Next, consider
2
co
s
2
x
+
cos
x
−
1
=
0
⇒
cos
x
=
4
−
1
±
1
+
8
=
4
−
1
±
3
=
1
,
2
1
⇒
cos
x
=
cos
π
,
cos
3
π
⇒
x
=
2
nπ
±
π
or
2
nπ
±
3
π
,
n
∈
I
.