Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solve the equation 2(cos x + cos2x) + sin2x( 1 + 2cosx) = 2sinx.
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Solve the equation
$2(cos \,x + cos2x) + sin2x( 1 + 2cosx) = 2sinx$.
Trigonometric Functions
A
$n\pi+\left(-1\right)^{n}\left(-\frac{\pi}{2}\right)$, $n \in I$
0%
B
$2n\pi \pm\pi$ or $2n\pi\pm\frac{\pi}{3}$, $n \in I$
33%
C
$ n\pi$, $n\in I$
17%
D
Both $(a)$ and $(b)$
50%
Solution:
The given equation is
$2(cosx + cos2x) + sin2x(1 + 2cosx) = 2sinx$
$\Rightarrow 2\left(cosx + 2cos^{2}x - 1\right) + 2sinxcosx\left(1 + 2 \,cosx\right)$
$= 2sinx$
$\Rightarrow 2cosx + 2sinx \,cosx + 4cos^{2}x + 4sinxcos^{2}x - 2$
$-2sinx=0$
$\Rightarrow 2cosx\left(1 + sinx\right) + 4cos^{2}x\left(1 + sinx\right) -2\left(1 + sinx\right)$
$ = 0$
$\Rightarrow 2\left(1 + sinx\right)\left\{cosx + 2cos^{2}x - 1\right\} = 0$
$\Rightarrow $ either $1 + sinx = 0$ or $2cos^{2}x + cosx - 1 = 0$
First, consider $1 + sinx = 0$
$\Rightarrow sinx=-1=sin\left(-\frac{\pi}{2}\right)$
$\Rightarrow x=n\pi+\left(-1\right)^{n}\left(-\frac{\pi}{2}\right)$, $n \in I$.
Next, consider $2cos^{2}\,x+cosx-1=0$
$\Rightarrow cosx=\frac{-1 \pm\sqrt{1+8}}{4}$
$=\frac{-1 \pm3}{4}=1$, $\frac{1}{2}$
$\Rightarrow cosx=cos\pi$, $cos \frac{\pi}{3}$
$\Rightarrow x=2n\pi \pm\pi$ or $2n\pi \pm\frac{\pi}{3}$, $n \in I$.