Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation (x+(x3/3!)+(x5/5!)+ ldots/1+(x2)2!+(x4)4!+ ldots=(dx-dy/dx+dy) is
Q. Solution of the differential equation
1
+
2
!
x
2
+
4
!
x
4
+
…
x
+
3
!
x
3
+
5
!
x
5
+
…
=
d
x
+
d
y
d
x
−
d
y
is
3978
196
Differential Equations
Report Error
A
2
y
e
2
x
=
C
⋅
e
2
x
+
1
50%
B
2
y
e
2
x
=
C
⋅
e
2
x
−
1
50%
C
y
e
2
x
=
C
⋅
e
2
x
+
2
0%
D
none of these
0%
Solution:
Given equation can be rewritten as
2
1
(
e
x
+
e
−
x
)
2
1
(
e
x
−
e
−
x
)
=
d
x
+
d
y
d
x
−
d
y
Applying componendo and dividendo, we get
d
x
d
y
=
e
x
e
−
x
=
e
−
2
x
⇒
2
y
=
−
e
−
2
x
+
C
(Integrating)
⇒
2
y
e
2
x
=
C
⋅
e
2
x
−
1