Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Solution of the differential equation $\frac{x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots}{1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots}=\frac{dx-dy}{dx+dy}$ is

Differential Equations

Solution:

Given equation can be rewritten as
$\frac{\frac{1}{2}\left(e^{x}-e^{-x}\right)}{\frac{1}{2}\left(e^{x}+e^{-x}\right)}=\frac{dx-dy}{dx+dy}$
Applying componendo and dividendo, we get
$\frac{dy}{dx}=\frac{e^{-x}}{e^{x}}=e^{-2x}$
$\Rightarrow 2y=-e^{-2x}+C\quad$ (Integrating)
$\Rightarrow 2ye^{2x}=C\cdot e^{2x}-1$