Q.
On solving the differential equation x2ydx−(x3+y2)dy=0, the value of logy is
2123
207
J & K CETJ & K CET 2013Differential Equations
Report Error
Solution:
Given, x2ydx−(x3+y3)dy=0 ⇒dydx=x2yx3+y3 ..(i)
Which is a homogeneous differential equation Now, put x=vy ..(ii)
On differentiation wrt to y, we get dydx=v.1+ydydv
Then, from Eq. (i) v+ydydv=(vy)2y(vy)3+y3 =v2v3+1 ⇒v+ydydv=v+v21 ⇒ydydv=v21 ⇒∫v2dv=∫ydy
(on integrating) ⇒3v3=log∣y∣−C ⇒logy=3y3x3+C
{from Eq. (ii)}