Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
On solving the differential equation x2y dx-(x3+y2)dy=0, the value of log y is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. On solving the differential equation $ {{x}^{2}}y\,dx-({{x}^{3}}+{{y}^{2}})dy=0, $ the value of $ \log \,y $ is
J & K CET
J & K CET 2013
Differential Equations
A
$ \frac{{{x}^{3}}}{3{{y}^{3}}}+C $
B
$ \frac{{{x}^{2}}}{{{y}^{2}}}+C $
C
$ \frac{{{x}^{2}}}{3{{y}^{3}}}+C $
D
$ \frac{{{x}^{3}}}{{{x}^{3}}+{{y}^{3}}}+C $
Solution:
Given, $ {{x}^{2}}y\,dx-({{x}^{3}}+{{y}^{3}})\,dy=0 $
$ \Rightarrow $ $ \frac{dx}{dy}=\frac{{{x}^{3}}+{{y}^{3}}}{{{x}^{2}}y} $ ..(i)
Which is a homogeneous differential equation Now, put $ x=vy $ ..(ii)
On differentiation wrt to y, we get
$ \frac{dx}{dy}=v.1+y\frac{dv}{dy} $
Then, from Eq. (i)
$ v+y\frac{dv}{dy}=\frac{{{(vy)}^{3}}+{{y}^{3}}}{{{(vy)}^{2}}y} $
$ =\frac{{{v}^{3}}+1}{{{v}^{2}}} $
$ \Rightarrow $ $ v+y\frac{dv}{dy}=v+\frac{1}{{{v}^{2}}} $
$ \Rightarrow $ $ y\frac{dv}{dy}=\frac{1}{{{v}^{2}}} $
$ \Rightarrow $ $ \int{{{v}^{2}}\,dv=\int{\frac{dy}{y}}} $
(on integrating)
$ \Rightarrow $ $ \frac{{{v}^{3}}}{3}=\log |y|-C $
$ \Rightarrow $ $ \log y=\frac{{{x}^{3}}}{3{{y}^{3}}}+C $
{from Eq. (ii)} $ $