- Tardigrade
- Question
- Mathematics
- Match the statements given in Column I with the intervals/union of intervals given in Column II: Column I Column II A The set operatornameRe((2 i z/1-z2)): z text is a complex number, |z|=1, z ≠ ± 1 P (-∞, -1) ∪(1, ∞) B The domain of the function f(x)= sin -1((8(3)x-2/1-32(x-1))) is Q (-∞, 0) ∪(0, ∞) C If f(θ)=|1 tan θ 1 - tan θ 1 tan θ -1 - tan θ 1|, then the set f(θ): 0 ≤ θ < (π/2) is R [2, ∞) D If f(x)=x(3/2)(3 x-10), x ≥ 0, then f(x) is increasing in S (-∞ -1) ∪(1, ∞) T (-∞, 0) ∪(2, ∞)
Q.
Match the statements given in Column I with the intervals/union of intervals given in Column II:
Column I
Column II
A
The set \left\{\operatorname{Re}\left(\frac{2 i z}{1-z^{2}}\right): z \text { is a complex number, }|z|=1, z \neq \pm 1\right\}
P
B
The domain of the function is
Q
C
If ,
then the set is
R
D
If , then is increasing in
S
T
Column I | Column II | ||
---|---|---|---|
A | The set \left\{\operatorname{Re}\left(\frac{2 i z}{1-z^{2}}\right): z \text { is a complex number, }|z|=1, z \neq \pm 1\right\} | P | |
B | The domain of the function is | Q | |
C | If , then the set is |
R | |
D | If , then is increasing in | S | |
T |
Solution: