Q.
Match the statements given in Column I with the intervals/union of intervals given in Column II:
Column I
Column II
A
The set $$ \left\{\operatorname{Re}\left(\frac{2 i z}{1-z^{2}}\right): z \text { is a complex number, }|z|=1, z \neq \pm 1\right\} $$
P
$(-\infty, -1) \cup(1, \infty)$
B
The domain of the function $f(x)=\sin ^{-1}\left(\frac{8(3)^{x-2}}{1-3^{2(x-1)}}\right)$ is
Q
$(-\infty, 0) \cup(0, \infty)$
C
If $f(\theta)=\begin{vmatrix}1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1\end{vmatrix}$,
then the set $\left\{f(\theta): 0 \leq \theta < \frac{\pi}{2}\right\}$ is
R
$[2, \infty)$
D
If $f(x)=x^{\frac{3}{2}}(3 x-10), x \geq 0$, then $f(x)$ is increasing in
S
$(-\infty -1) \cup(1, \infty)$
T
$(-\infty, 0) \cup(2, \infty)$
Column I | Column II | ||
---|---|---|---|
A | The set $$ \left\{\operatorname{Re}\left(\frac{2 i z}{1-z^{2}}\right): z \text { is a complex number, }|z|=1, z \neq \pm 1\right\} $$ | P | $(-\infty, -1) \cup(1, \infty)$ |
B | The domain of the function $f(x)=\sin ^{-1}\left(\frac{8(3)^{x-2}}{1-3^{2(x-1)}}\right)$ is | Q | $(-\infty, 0) \cup(0, \infty)$ |
C | If $f(\theta)=\begin{vmatrix}1 & \tan \theta & 1 \\ -\tan \theta & 1 & \tan \theta \\ -1 & -\tan \theta & 1\end{vmatrix}$, then the set $\left\{f(\theta): 0 \leq \theta < \frac{\pi}{2}\right\}$ is |
R | $[2, \infty)$ |
D | If $f(x)=x^{\frac{3}{2}}(3 x-10), x \geq 0$, then $f(x)$ is increasing in | S | $(-\infty -1) \cup(1, \infty)$ |
T | $(-\infty, 0) \cup(2, \infty)$ |
JEE AdvancedJEE Advanced 2011
Solution: