Q.
Match the limits of the functions given in Column I with their corresponding values given in Column II and choose the correct option from the codes given below.
A. Given, x→πlimπ(π−x)sin(π−x)
Let π−x=h, As x→π, then h→0 ∴x→πlimπ(π−x)sin(π−x)=h→0limπhsinh=h→0limπ1×hsinh =π1×1=π1(∵h→0limhsinh=1)
B. Given x→0limπ−xcosx
Put the limit directly, we get π−0cos0=π1
C. Given, x→0limcosx−1cos2x−1=x→0lim1−cosx1−cos2x =x→0lim2sin22x2sin2x (∵1−cos2x=2sin2x and 1−cosx=2sin22x)
Multiplying and dividing by x2 and then multiplying by 44 in the numerater. we get =x→0limx2sin2x×sin22x4×4x2 =x→0lim(xsinx)2×(sin2x2x)2×4 =1×1×4=4
D. Given, x→0limbsinxax+xcosx
Dividing each term by x, we get −x→0limxbsinxxax+xxcosx =x→0limb(xsinx)a+cosx =b×1a+cos0=ba+1(∵x→0limxsinx=1)
Note In most of the times, when we put the limit, it becomes an indeterminate form. Firstly, simplity the function by expanding or by using the formula such that we get the factor which is causing the function to indeterminate form and then remove the cause.
E. x→0limxsecx=0×sec0=0×1=0
F. x→0limax+sinbxsinax+bx
Dividing each term by x, we get =x→0limxax+xsinbxxsinax+xbx=x→0lima+bxbsinbxaxasinax+b =a+b×1a×1+b=a+ba+b=1(∵x→0limxsinx=1)