Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Match the limits of the functions given in Column I with their corresponding values given in Column II and choose the correct option from the codes given below.
Column I Column II
A $\displaystyle\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}$ 1 4
B $\displaystyle\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}$ 2 $\frac{1}{\pi}$
C $\displaystyle\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}$ 3 $\frac{a+1}{b}$
D $\displaystyle\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}$ 4 0
E $\displaystyle\lim _{x \rightarrow 0} x \sec x$ 5 1
F $\displaystyle\lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x}$ $(a, b, a+b \neq 0)$

Limits and Derivatives

Solution:

A. Given, $\displaystyle\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}$
Let $\pi-x=h$, As $x \rightarrow \pi$, then $h \rightarrow 0$
$\therefore \displaystyle\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi(\pi-x)}=\displaystyle\lim _{h \rightarrow 0} \frac{\sin h}{\pi h}= \displaystyle\lim _{h \rightarrow 0} \frac{1}{\pi} \times \frac{\sin h}{h} $
$=\frac{1}{\pi} \times 1=\frac{1}{\pi} \left(\because \displaystyle\lim _{h \rightarrow 0} \frac{\sin h}{h}=1\right)$
B. Given $\displaystyle\lim _{x \rightarrow 0} \frac{\cos x}{\pi-x}$
Put the limit directly, we get $\frac{\cos 0}{\pi-0}=\frac{1}{\pi}$
C. Given, $\displaystyle\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{\cos x-1}=\displaystyle\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{1-\cos x}$
$=\displaystyle\lim _{x \rightarrow 0} \frac{2 \sin ^2 x}{2 \sin ^2 \frac{x}{2}}$
$\left(\because 1-\cos 2 x=2 \sin ^2 x \text { and } 1-\cos x=2 \sin ^2 \frac{x}{2}\right)$
Multiplying and dividing by $x^2$ and then multiplying by $\frac{4}{4}$ in the numerater. we get
$=\displaystyle\lim _{x \rightarrow 0} \frac{\sin ^2 x}{x^2} \times \frac{4 \times \frac{x^2}{4}}{\sin ^2 \frac{x}{2}}$
$=\displaystyle\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^2 \times\left(\frac{\frac{x}{2}}{\sin \frac{x}{2}}\right)^2 \times 4$
$=1 \times 1 \times 4=4$
D. Given, $\displaystyle\lim _{x \rightarrow 0} \frac{a x+x \cos x}{b \sin x}$
Dividing each term by $x$, we get
$-\displaystyle\lim _{x \rightarrow 0} \frac{\frac{a x}{x}+\frac{x \cos x}{x}}{\frac{b \sin x}{x}}$
$=\displaystyle\lim _{x \rightarrow 0} \frac{a+\cos x}{b\left(\frac{\sin x}{x}\right)}$
$=\frac{a+\cos 0}{b \times 1}=\frac{a+1}{b} \left(\because \displaystyle\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right)$
Note In most of the times, when we put the limit, it becomes an indeterminate form. Firstly, simplity the function by expanding or by using the formula such that we get the factor which is causing the function to indeterminate form and then remove the cause.
E. $ \displaystyle\lim _{x \rightarrow 0} x \sec x=0 \times \sec 0=0 \times 1=0 $
F. $ \displaystyle\lim _{x \rightarrow 0} \frac{\sin a x+b x}{a x+\sin b x} $
Dividing each term by $x$, we get
$=\displaystyle\lim _{x \rightarrow 0} \frac{\frac{\sin a x}{x}+\frac{b x}{x}}{\frac{a x}{x}+\frac{\sin b x}{x}}=\displaystyle\lim _{x \rightarrow 0} \frac{\frac{a \sin a x}{a x}+b}{a+\frac{b \sin b x}{b x}}$
$=\frac{a \times 1+b}{a+b \times 1}=\frac{a+b}{a+b}=1 \left(\because \displaystyle\lim _{x \rightarrow 0} \frac{\sin x}{x}=1\right)$