Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Lot of be any function continuous on [a, b ] and twice differentiable on (a, b). If for all x ϵ (a, b ) , f'( x ) > 0 and f'' ( x ) < 0, then for any c ϵ (a, b), (f(c) - f(a)/f(b)-f(c)) is greater than :
Q. Lot of be any function continuous on [
a
,
b
] and twice differentiable on (a, b). If for all x
ϵ
(
a
,
b
) ,
f
′
(
x
)
>
0
an
d
f
′′
(
x
)
<
0
, then for any
cϵ
(
a
,
b
),
f
(
b
)
−
f
(
c
)
f
(
c
)
−
f
(
a
)
is greater than :
2077
203
JEE Main
JEE Main 2020
Application of Derivatives
Report Error
A
c
−
a
b
−
c
14%
B
1
39%
C
b
−
c
c
−
a
31%
D
b
−
a
b
+
a
17%
Solution:
it is clear from graph that
m
1
>
m
2
⇒
c
−
a
f
(
c
)
−
f
(
a
)
>
b
−
c
f
(
b
)
−
f
(
c
)
f
(
b
)
−
f
(
c
)
f
(
c
)
−
f
(
a
)
>
b
−
c
c
−
a