Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z and w be non-zero complex numbers such that zw=|z2| and |z - overset-z|+|w + overset-w|=4. If w varies, then the perimeter of the locus of z is
Q. Let
z
and
w
be non-zero complex numbers such that
z
w
=
∣
∣
z
2
∣
∣
and
∣
∣
z
−
z
−
∣
∣
+
∣
∣
w
+
w
−
∣
∣
=
4.
If
w
varies, then the perimeter of the locus of
z
is
3173
151
NTA Abhyas
NTA Abhyas 2022
Report Error
A
8
2
units
B
4
2
units
C
8
units
D
4
units
Solution:
Given,
z
w
=
∣
z
∣
2
⇒
z
w
=
z
z
−
⇒
w
=
z
−
{
z
=
0
}
Now,
∣
∣
z
−
z
−
∣
∣
+
∣
∣
w
+
w
−
∣
∣
=
4
⇒
∣
∣
z
−
z
−
∣
∣
+
∣
∣
z
+
z
−
∣
∣
=
4
Let,
z
=
x
+
i
y
, then we get,
∣
x
∣
+
∣
y
∣
=
2
which represents a square of side length equal to
2
2
⇒
The perimeter of the locus is
8
2
units