Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $z$ and $w$ be non-zero complex numbers such that $zw=\left|z^{2}\right|$ and $\left|z - \overset{-}{z}\right|+\left|w + \overset{-}{w}\right|=4.$ If $w$ varies, then the perimeter of the locus of $z$ is

NTA AbhyasNTA Abhyas 2022

Solution:

Given, $zw=\left|z\right|^{2}\Rightarrow zw=z\overset{-}{z}$
$\Rightarrow w=\overset{-}{z}\left\{z \neq 0\right\}$
Now, $\left|z - \overset{-}{z}\right|+\left|w + \overset{-}{w}\right|=4$
$\Rightarrow \left|z - \overset{-}{z}\right|+\left|z + \overset{-}{z}\right|=4$
Let, $z=x+iy$ , then we get,
$\left|x\right|+\left|y\right|=2$
which represents a square of side length equal to $2\sqrt{2}$
Solution
$\Rightarrow $ The perimeter of the locus is $8\sqrt{2}$ units