Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z1 and z2 be complex numbers such that z1 ≠ z2 and | z1| = | z2 | . If Re (z1) > 0 and Im (z2) < 0 ,then (z1+ z2/z1 - z2) is
Q. Let
z
1
and
z
2
be complex numbers such that
z
1
=
z
2
and
∣
z
1
∣
=
∣
z
2
∣
. If Re
(
z
1
)
>
0
and
I
m
(
z
2
)
<
0
,then
z
1
−
z
2
z
1
+
z
2
is
2552
191
WBJEE
WBJEE 2018
Report Error
A
One
0%
B
real and positive
20%
C
real and negative
0%
D
purely imaginary
80%
Solution:
Let
z
1
=
x
1
+
i
y
1
and
z
2
=
x
2
+
i
y
2
R
e
(
z
1
)
>
0
⇒
x
1
>
0
and
I
m
(
z
2
)
<
0
⇒
y
2
<
0
Given,
∣
z
1
∣
=
∣
z
2
∣
⇒
∣
z
1
∣
2
=
∣
∣
z
2
2
∣
∣
⇒
z
1
z
1
ˉ
=
z
2
z
2
ˉ
Now,
(
z
1
−
z
2
z
1
+
z
2
)
+
(
z
1
−
z
2
z
1
+
z
2
)
=
(
z
1
−
z
2
z
1
+
z
2
)
+
(
z
ˉ
1
−
z
ˉ
2
z
ˉ
1
+
z
ˉ
2
)
=
(
z
1
−
z
2
)
(
z
ˉ
1
−
z
ˉ
2
)
z
1
z
ˉ
1
+
z
2
z
ˉ
1
−
z
1
z
ˉ
2
−
z
2
z
ˉ
2
+
z
1
z
ˉ
1
+
z
1
z
ˉ
2
−
z
2
z
ˉ
1
+
z
2
z
ˉ
2
=
(
z
1
−
z
2
)
(
z
ˉ
1
−
z
ˉ
2
)
2
(
∣
z
1
∣
2
−
∣
z
2
∣
2
)
=
0
(
∵
∣
z
1
∣
2
=
∣
z
2
∣
2
)
=
z
1
−
z
2
z
1
+
z
2
is purely imaginary.