Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z1 and z2 be complex numbers such that z1 ≠ z2 and | z1| = | z2 | . If Re (z1) > 0 and Im (z2) < 0 ,then (z1+ z2/z1 - z2) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $z_1$ and $z_2$ be complex numbers such that $z_1 \neq z_2$ and $| z_1| = | z_2 |$ . If Re $(z_1) > 0$ and $Im (z_2) < 0 $ ,then $\frac{z_1+ z_2}{z_1 - z_2}$ is
WBJEE
WBJEE 2018
A
One
0%
B
real and positive
20%
C
real and negative
0%
D
purely imaginary
80%
Solution:
Let $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$
$Re \left(z_{1}\right)>0 \Rightarrow x_{1}>0$
and $Im \left(z_{2}\right) < 0 $
$ \Rightarrow y_{2} < 0$
Given, $\left|z_{1}\right|=\left|z_{2}\right|$
$\Rightarrow \left|z_{1}\right|^{2}=\left|z_{2}^{2}\right|$
$\Rightarrow z_1\bar{z_1} = z_2\bar{z_2}$
Now, $\left(\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right)+\left(\frac{\overline{z_1+z_2}}{z_1-z_2}\right)$
$=\left(\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right)+\left(\frac{\bar{z}_{1}+\bar{z}_{2}}{\bar{z}_{1}-\bar{z}_{2}}\right)$
$=\frac{z_{1} \bar{z}_{1}+z_{2} \bar{z}_{1}-z_{1} \bar{z}_{2}-z_{2} \bar{z}_{2}+z_{1} \bar{z}_{1}+z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}+z_{2} \bar{z}_{2}}{\left(z_{1}-z_{2}\right)\left(\bar{z}_{1}-\bar{z}_{2}\right)}$
$=\frac{2\left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)}{\left(z_{1}-z_{2}\right)\left(\bar{z}_{1}-\bar{z}_{2}\right)}=0 \left(\because\left|z_{1}\right|^{2}=\left|z_{2}\right|^{2}\right)$
$=\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ is purely imaginary.