3∣z1∣=4∣z2∣ ⇒∣z2∣∣z1∣=34 ⇒∣2z2∣∣3z1∣=2
Let 2z23z1=a=2cosθ+2isinθ z=2z23z1+3z12z2=a+a1 =25cosθ+23isinθ
Now all options are incorrect .
There is a misprint in the problem actual
problem should be :
"Let z1 and z2 be any non-zero complex number such that 3∣z1∣=2∣z2∣.
If z=2z23z1+3z12z2 , then "
Given 3∣z1∣=2∣z2∣
Now ∣∣2z23z1∣∣=1
Let 2z23z1=a=cosθ+isinθ z=2z23z1+3z12z2 =a+a1=2cosθ ∴Im(z)=0