Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $z_1$ and $z_2$ be any two non-zero complex numbers such that $3|z_1| = 4 |z_2|$.
If $z = \frac{3z_{1}}{2z_{2}} + \frac{2z_{2}}{3z_{1}}$ then :

JEE MainJEE Main 2019Complex Numbers and Quadratic Equations

Solution:

$3\left|z_{1}\right| = 4 \left|z_{2}\right| $
$ \Rightarrow \frac{\left|z_{1}\right|}{\left|z_{2}\right|} = \frac{4}{3}$
$ \Rightarrow \frac{\left|3z_{1}\right|}{\left|2z_{2}\right|} = 2 $
Let $ \frac{3z_{1}}{2z_{2}} = a = 2 \cos \theta + 2 i \sin\theta$
$ z = \frac{3z_{1}}{2z_{2}} + \frac{2z_{2}}{3z_{1}} = a+ \frac{1}{a} $
$ = \frac{5}{2} \cos\theta + \frac{3}{2} i \sin \theta$
Now all options are incorrect .
There is a misprint in the problem actual problem should be :
"Let $z_1$ and $z_2$ be any non-zero complex number such that $3|z_1| = 2|z_2|$.
If $z = \frac{3z_{1}}{2z_{2}} + \frac{2z_{2}}{3z_{1}} $ , then "
Given
$3 |z_1| = 2 |z_2|$
Now $\left|\frac{3z_{1}}{2z_{2}}\right| = 1 $
Let $ \frac{3z_{1}}{2z_{2} } = a = \cos\theta + i \sin\theta $
$ z = \frac{3z_{1} }{2z_{2}} + \frac{2z_{2}}{3z_{1}} $
$ = a + \frac{1}{a} = 2 \cos\theta $
$\therefore Im(z) = 0 $