Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x), x>1, be the solution of the differential equation (x-1) (d y/d x)+2 x y=(1/x-1), with y(2)=(1+e4/2 e4). If y(3)=(eα+1/β eα). then the value of α+β is equal to.
Q. Let
y
=
y
(
x
)
,
x
>
1
, be the solution of the differential equation
(
x
−
1
)
d
x
d
y
+
2
x
y
=
x
−
1
1
, with
y
(
2
)
=
2
e
4
1
+
e
4
. If
y
(
3
)
=
β
e
α
e
α
+
1
. then the value of
α
+
β
is equal to______.
326
165
JEE Main
JEE Main 2022
Differential Equations
Report Error
Answer:
14
Solution:
d
x
d
y
+
x
−
1
2
x
⋅
y
=
(
x
−
1
)
2
1
y
=
(
x
−
1
)
2
1
[
2
e
2
x
e
2
x
+
1
]
y
(
3
)
=
8
e
6
e
6
+
1
α
+
β
=
14