Q. Let $y=y(x), x>1$, be the solution of the differential equation $(x-1) \frac{d y}{d x}+2 x y=\frac{1}{x-1}$, with $y(2)=\frac{1+e^{4}}{2 e^{4}}$. If $y(3)=\frac{e^{\alpha}+1}{\beta e^{\alpha}}$. then the value of $\alpha+\beta$ is equal to______.
Solution: