Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let y=y(x) be the solution of the differential equation (d y/d x)+(√2 y/2 cos 4 x- cos 2 x)= xe tan -1(√2 cot 2 x ), 0 < x < π / 2 with y((π/4))=(π2/32) If y((π/3))=(π2/18) e- tan -1(α), then the value of 3 α2 is equal to .
Q. Let
y
=
y
(
x
)
be the solution of the differential equation
d
x
d
y
+
2
c
o
s
4
x
−
c
o
s
2
x
2
y
=
x
e
t
a
n
−
1
(
2
c
o
t
2
x
)
,
0
<
x
<
π
/2
with
y
(
4
π
)
=
32
π
2
If
y
(
3
π
)
=
18
π
2
e
−
t
a
n
−
1
(
α
)
, then the value of
3
α
2
is equal to ______.
2410
142
JEE Main
JEE Main 2022
Differential Equations
Report Error
Answer:
2
Solution:
d
x
d
y
+
2
c
o
s
4
x
−
c
o
s
2
x
2
y
=
x
e
t
a
n
−
1
(
2
c
o
t
2
x
)
∫
2
c
o
s
4
x
−
c
o
s
2
x
d
x
=
∫
c
o
s
4
x
+
s
i
n
4
x
d
x
=
∫
1
+
c
o
t
4
x
cosec
4
x
d
x
=
−
∫
t
4
+
1
t
2
+
1
d
t
=
−
∫
(
t
−
t
1
)
2
+
2
1
d
t
=
2
−
1
tan
−
1
(
2
t
−
t
1
)
Cotx
=
t
=
−
2
1
tan
−
1
(
2
cot
2
x
)
∴
I
F
=
e
−
t
a
n
−
1
(
2
c
o
t
2
x
)
y
e
−
t
a
n
−
1
(
2
c
o
t
2
x
)
=
∫
x
d
x
y
e
−
t
a
n
−
1
(
2
c
o
t
2
x
)
=
2
x
2
+
c
y
(
4
π
)
=
32
π
2
+
c
⇒
c
=
0
y
=
2
x
2
e
t
a
n
−
1
(
2
c
o
t
2
x
)
y
(
3
π
)
=
18
π
2
e
t
a
n
−
1
(
2
c
o
t
3
2
π
)
=
18
π
2
e
−
t
a
n
−
1
(
3
2
)
α
=
3
2
⇒
3
α
2
=
2