Q.
Let $y=y(x)$ be the solution of the differential equation
$\frac{d y}{d x}+\frac{\sqrt{2} y}{2 \cos ^{4} x-\cos 2 x}= xe ^{\tan ^{-1}(\sqrt{2} \cot 2 x )}, 0 < x < \pi / 2$ with $y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{32}$
If $y\left(\frac{\pi}{3}\right)=\frac{\pi^{2}}{18} e^{-\tan ^{-1}(\alpha)}$, then the value of $3 \alpha^{2}$ is equal to ______.
Solution: