Q.
Let y=f(x) be an infinitely differentiable function on R such that f(0)=0 and dxndny=0 at x=0 for n=1,2,3,4.
If x→0Limx4f(4x)+af(3x)+bf(2x)+cf(x)+df(0) exists, then find the value of (25a+50b+100c+500d).
274
102
Continuity and Differentiability
Report Error
Answer: 300
Solution:
The fact that the limit exists implies that x→0Lim(f(4x)+af(3x)+bf(2x)+cf(x)+df(0))=(1+a+b+c+d)f(0)=0 ∴a+b+c+d=−1 ....(1)
Apply L'Hospital Rule once, then we have x→0Limx4f(4x)+af(3x)+bf(2x)+cf(x)+df(0)=x→0Lim4x34f′(4x)+3af′(3x)+2bf′(2x)+cf′(x)
and for the following limit to exist, we also need x→0Lim(4f′(4x)+3af′(3x)+2bf′(2x)+cf′(x))=(4+3a+2b+c)f′(0)=0,
\therefore & 3 a+2 b+c=-4 \ldots .(2)
Repeat this process twice and get another two equations as 9a+4b+c=−16....(3)
and 27a+8b+c=−64 ....(4)
Now, (4) - (3) ⇒18a+4b+48=0⇒9a+2b+24=0...(5)
(3) −(2)⇒6a+2b+12=0⇒6a+2b+12=0....(6)
(5) −6(6)⇒3a+12=0⇒a=−4,b=6
From equation (2), we get c=−4
and from equation (1), d=1.
Hence (25a+50b+100c+500d)=−100+300−400+500=300