Q. Let $y=f(x)$ be an infinitely differentiable function on $R$ such that $f (0) \neq 0$ and $\frac{ d ^{ n } y }{ dx ^{ n }} \neq 0$ at $x =0$ for $n =1,2,3,4$. If $\underset{x \rightarrow 0}{\text{Lim}} \frac{f(4 x)+a f(3 x)+b f(2 x)+c f(x)+d f(0)}{x^4}$ exists, then find the value of $(25 a+50 b+100 c+500 d)$.
Continuity and Differentiability
Solution: